Total Pages: 6

B.Sc/4th Sem (H)/CHEM/23(CBCS)

2023

4th Semester Examination CHEMISTRY (Honours)

Paper: C 10-T

(Organic Chemistry-IV)

[CBCS]

Full Marks: 40

Time: Two Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five questions:

 $2 \times 5 = 10$

- 1. Explain the following:
 - (i) Ethylene fails to show any IR signals around $1600~{\rm cm}^{-1}$.
 - (ii) Can D₂O be used as a solvent in ¹H-NMR studies?
- 2. Write a note on symmetry restriction in electronic transition.

- 3. How can you distinguish chemically between N-methylaniline and N, N-dimethylaniline?
- In the Arndt-Ester synthesis two equivalents of diazomethane is used. Explain the statement showing mechanism of the reaction.
 - Alkaline hydrolysis of benzonitrile affords the salt of an acid but in presence of H₂O₂ an amide is formed — Explain.

6. Transform the following:

- 7. How you can distinguish between the following pairs:
 - (i) CH₃CH₂Br and CH₃CH₂OH (ordinary grade) by NMR.
 - (ii) Methylbenzoate and Phenylacetate by IR.

8. Convert the following:

$\label{eq:h3CCOCH2CH2CO2Et} \begin{array}{c} \text{H}_3\text{C COCH}_2\text{CH}_2\text{CO}_2\text{Et} \\ \\ \longrightarrow \text{CH}_3\text{COCH}_2\text{CH}_2\text{CH}_2\text{OH} \end{array}$

Group - B

Answer any *four* questions : $5 \times 4 = 20$

9. (a) Complete the following reaction scheme with plausible mechanism.

$$PhCH2NH2 \xrightarrow{\text{(i) CICOOEt}} (A) \xrightarrow{\text{NaOH} / H2O} (B)$$

- (b) How can IR spectroscopy distinguish between 1-hexyne, 2-hexyne, and 3-hexyne? 2
- (a) An organic compound (S) C₈H₉ON on treatment with H₂SO₄ isomerizes to (T) which on hydrolysis furnishes aniline and acetic acid. What are (S) and (T)? Explain the above fact and show mechanism of isomerization step only.
 - (b) How *o*-nitroaniline can be distinguished from *p*-nitroaniline by UV-spectroscopy? 2
- 1:1 mixture of PhOCH₂ CH = C*H₂ and PhOCH₂ CH = CH₂ is heated together. Explain their formation. (C* = C¹⁴).

P.T.O.

20)	Why do acetylenic protons resonate at upfield
-	region with respect to ethylenic protons though
	acetylenic hydrogens are more acidic than ethylenic
	hydrogens? — Explain. 3

- (a) Compare the rate of formation of aniline from fluorobenzene and bromobenzene in presence of *NaNH*₂ and liq. *NH*₃. Cite suitable experimental evidence.
 - Which has a greater chemical shift for the OH proton, the ¹H NMR spectrum of pure ethanol or the ¹H NMR spectrum of ethanol dissolved in CH,Cl,? Give your answer with explanation. 2
- 13. (a) Explain with mechanism the rate(s) of nitration of nitrobenzene and pentadeuteronitrobenzene under similar reaction conditions.
 - (b) How many peaks do you expect for nitrobenzene in its ¹H-NMR spectrum? Draw a rough sketch for the ¹H-NMR spectrum of nitrobenzene assigning the protons in the diagram. (Actual δ values and meta-coupling may be ignored).

(a) If two signals differ by 90 Hz in a 300 MHz spectrometer, by how much do they differ in a 500 MHz spectrometer?

(b) Convert:

 $(1) \bigcirc \longrightarrow \bigcirc$

2+2

$$(ii) \longrightarrow (in) \longrightarrow$$

Group - C

Answer any one question:

 $10 \times 1 = 10$

(a) Give the retrosynthetic pathways and one efficient synthetic method for the following compound. 3×2

(b) Write down the structure of the products A, B, C and D.

P.T.O.

16. (a) Predict the major product only and write mechanism to show their formation. 2×4

(ii) Br i) KCN / EtOH /
$$\Delta$$
 ii) H₃O⁺

(iii)
$$NH-NH \longrightarrow H^+ \longrightarrow \Delta$$

(b) Which member of the following pair will undergo Dienone-Phenol rearrangement more rapidly and why?

